Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Global Biosecurity ; 4, 2022.
Article in English | Scopus | ID: covidwho-2277290

ABSTRACT

The term "Tomato Flu” or "Tomato Fever” is the colloquial term in India used to describe multiple diseases that present with a fever and rash, with characteristic red, "tomato” shaped blister that appears on different parts of the body, which begin small and increase in size as disease progresses. Some controversy exists on this ‘new viral "flu” that emerged in May 2022 over a period of 2 weeks in areas in the south of India. Currently, local healthcare workers have been encouraged to address the disease as a variant of Hand Foot and Mouth Disease to avoid unnecessary panic on the emergence of a "new outbreak”. With the circulation of other viruses, inadequate testing and poor-quality surveillance in a low resource setting, where healthcare systems are already burdened with ongoing monkeypox outbreak and COVID-19 pandemic, the use of colloquial terms may cause unnecessary panic in the current hypervigilant climate. Confirmation from Government is required to confirm whether this outbreak is due to a mixed infection or a variant of the highly infectious Hand Foot and Mouth Disease virus. © 2022, The authors.

2.
Vaccines (Basel) ; 10(9)2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2010331

ABSTRACT

Vaccines constitute a pillar in the prevention of infectious diseases. The unprecedented emergence of novel immunization strategies due to the COVID-19 pandemic has again positioned vaccination as a pivotal measure to protect humankind and reduce the clinical impact and socioeconomic burden worldwide. Vaccination pursues the ultimate goal of eliciting a protective response in immunized individuals. To achieve this, immunogens must be efficiently delivered to prime the immune system and produce robust protection. Given their safety, immunogenicity, and flexibility to display varied and native epitopes, self-assembling protein nanoparticles represent one of the most promising immunogen delivery platforms. Currently marketed vaccines against the human papillomavirus, for instance, illustrate the potential of these nanoassemblies. This review is intended to provide novelties, since 2015, on the ground of vaccine design and self-assembling protein nanoparticles, as well as a comparison with the current emergence of mRNA-based vaccines.

3.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4505-4516, 2022 Aug.
Article in Chinese | MEDLINE | ID: covidwho-1998106

ABSTRACT

This study aims to obtain higher-level evidence by overviewing the Meta-analysis of Lianhua Qingwen preparations in the treatment of viral diseases including influenza, coronavirus disease 2019(COVID-19), and hand, foot and mouth disease(HFMD). CNKI, Wanfang, VIP, China Clinical Trial Registry(ChiCTR), PubMed, EMbase, Web of Science, and Cochrane Library were searched for the Meta-analysis about the treatment of viral diseases with Lianhua Qingwen preparations from the database establishment to April 1, 2022. After literature screening and data extraction, AMSTAR2 and the grading of recommendations assessment, development and evaluations(GRADE) system were used to assess the methodological quality and evidence quality, respectively, and then the efficacy and safety outcomes of Lianhua Qingwen preparations in the treatment of viral diseases were summarized. Thirteen Meta-analysis were finally included, three of which were rated as low grade by AMSTAR2 and ten as very low grade. A total of 75 outcome indicators were obtained, involving influenza, COVID-19, and HFMD. According to the GRADE scoring results, the 75 outcome indicators included 5(6.7%) high-level indicators, 18(24.0%) mediate-level indicators, 25(33.3%) low-level evidence indicators, and 27(36.0%) very low-level indicators.(1)In the treatment of influenza, Lianhua Qingwen preparations exhibited better clinical efficacy than other Chinese patent medicines and Ribavirin and had similar clinical efficacy compared with Oseltamivir. Lianhua Qingwen preparations were superior to other Chinese patent medicines, Oseltamivir, and Ribavirin in alleviating clinical symptoms. They showed no significant differences from Oseltamivir or conventional anti-influenza treatment in terms of the time to and rate of negative result of viral nucleic acid test.(2)In the treatment of COVID-19, Lianhua Qingwen preparation alone or combined with conventional treatment was superior to conventional treatment in terms of total effective rate, main symptom subsidence rate and time, fever clearance rate, duration of fever, time to fever clearance, cough subsidence rate, time to cough subsidence, fatigue subsidence rate, time to fatigue subsidence, myalgia subsidence rate, expectoration subsidence rate, chest tightness subsidence rate, etc. Lianhua Qingwen preparations no difference from conventional treatment in terms of subsiding sore throat, nausea, diarrhea, loss of appetite, headache, and dyspnea. In terms of chest CT improvement rate, rate of progression to severe case, cure time, and hospitalization time, Lianhua Qingwen alone or in combination with conventional treatment was superior to conventional treatment.(3)In the treatment of HFMD, Lianhua Qingwen Granules was superior to conventional treatment in terms of total effective rate, average fever clearance time, time to herpes subsidence, and time to negative result of viral nucleic acid test.(4)In terms of safety, Lianhua Qingwen preparations led to low incidence of adverse reactions, all of which were mild and disappeared after drug withdrawal. The available evidence suggests that in the treatment of influenza, COVID-19, and HFMD, Lianhua Qingwen preparations can relieve the clinical symptoms, shorten the hospitalization time, and improve the chest CT. They have therapeutic effect and good safety in the treatment of viral diseases. However, due to the low quality of available studies, more high-quality clinical trials are needed to support the above conclusions.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Influenza, Human , Nucleic Acids , Cough , Drugs, Chinese Herbal/therapeutic use , Fatigue , Fever/drug therapy , Humans , Influenza, Human/drug therapy , Meta-Analysis as Topic , Nonprescription Drugs/therapeutic use , Nucleic Acids/therapeutic use , Oseltamivir/therapeutic use , Ribavirin/therapeutic use
4.
Virol J ; 19(1): 120, 2022 07 21.
Article in English | MEDLINE | ID: covidwho-1965846

ABSTRACT

Coxsackievirus A10 (CV-A10), the causative agent of hand, foot, and mouth disease (HFMD), caused a series of outbreaks in recent years and often leads to neurological impairment, but a clear understanding of the disease pathogenesis and host response remains elusive. Cellular microRNAs (miRNAs), a large family of non-coding RNA molecules, have been reported to be key regulators in viral pathogenesis and virus-host interactions. However, the role of host cellular miRNAs defensing against CV-A10 infection is still obscure. To address this issue, we systematically analyzed miRNA expression profiles in CV-A10-infected 16HBE cells by high-throughput sequencing methods in this study. It allowed us to successfully identify 312 and 278 miRNAs with differential expression at 12 h and 24 h post-CV-A10 infection, respectively. Among these, 4 miRNAs and their target genes were analyzed by RT-qPCR, which confirmed the sequencing data. Gene target prediction and enrichment analysis revealed that the predicted targets of these miRNAs were significantly enriched in numerous cellular processes, especially in regulation of basic physical process, host immune response and neurological impairment. And the integrated network was built to further indicate the regulatory roles of miRNAs in host-CV-A10 interactions. Consequently, our findings could provide a beneficial basis for further studies on the regulatory roles of miRNAs relevant to the host immune responses and neuropathogenesis caused by CV-A10 infection.


Subject(s)
Enterovirus A, Human , Hand, Foot and Mouth Disease , MicroRNAs , Benzeneacetamides , Enterovirus A, Human/genetics , Epithelial Cells , Humans , MicroRNAs/genetics , Piperidones
SELECTION OF CITATIONS
SEARCH DETAIL